14 research outputs found

    The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes

    Get PDF
    Nematodes represent one of the most abundant and species-rich groups of animals on the planet, with parasitic species causing chronic, debilitating infections in both livestock and humans worldwide. The prevalence and success of the nematodes is a direct consequence of the exceptionally protective properties of their cuticle. The synthesis of this cuticle is a complex multi-step process, which is repeated 4 times from hatchling to adult and has been investigated in detail in the free-living nematode, Caenorhabditis elegans. This process is known as moulting and involves numerous enzymes in the synthesis and degradation of the collagenous matrix. The nas-36 and nas-37 genes in C. elegans encode functionally conserved enzymes of the astacin metalloprotease family which, when mutated, result in a phenotype associated with the late-stage moulting defects, namely the inability to remove the preceding cuticle. Extensive genome searches in the gastrointestinal nematode of sheep, Haemonchus contortus, and in the filarial nematode of humans, Brugia malayi, identified NAS-36 but not NAS-37 homologues. Significantly, the nas-36 gene from B. malayi could successfully complement the moult defects associated with C. elegans nas-36, nas-37 and nas-36/nas-37 double mutants, suggesting a conserved function for NAS-36 between these diverse nematode species. This conservation between species was further indicated when the recombinant enzymes demonstrated a similar range of inhibitable metalloprotease activities

    Collagen processing and cuticle formation is catalysed by the astacin metalloprotease DPY-31 in free-living and parasitic nematodes

    Get PDF
    The exoskeleton or cuticle performs many key roles in the development and survival of all nematodes. This structure is predominantly collagenous in nature and requires numerous enzymes to properly fold, modify, process and cross-link these essential structural proteins. The cuticle structure and its collagen components are conserved throughout the nematode phylum but differ from the collagenous matrices found in vertebrates. This structure, its formation and the enzymology of nematode cuticle collagen biogenesis have been elucidated in the free-living nematode Caenorhabditis elegans. The dpy-31 gene in C. elegans encodes a procollagen C-terminal processing enzyme of the astacin metalloprotease or bone morphogenetic protein class that, when mutated, results in a temperature-sensitive lethal phenotype associated with cuticle defects. In this study, orthologues of this essential gene have been identified in the phylogenetically diverse parasitic nematodes Haemonchus contortus and Brugia malayi. The DPY-31 protein is expressed in the gut and secretory system of C. elegans, a location also confirmed when a B. malayi transcriptional dpy-31 promoter-reporter gene fusion was expressed in C. elegans. Functional conservation between the nematode enzymes was supported by the fact that heterologous expression of the H. contortus dpy-31 orthologue in a C. elegans dpy-31 mutant resulted in the full rescue of the mutant body form. This interspecies conservation was further established when the recombinant nematode enzymes were found to have a similar range of inhibitable protease activities. In addition, the recombinant DPY-31 enzymes from both H. contortus and B. malayi were shown to efficiently process the C. elegans cuticle collagen SQT-3 at the correct C-terminal procollagen processing site

    Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro

    Get PDF
    We examined the mechanism of action and compared the anthelmintic efficacy of cysteine proteinases from papaya, pineapple, fig, kiwi fruit and Egyptian milkweed in vitro using the rodent gastrointestinal nematode Heligmosomoides polygyrus. Within a 2 h incubation period, all the cysteine proteinases, with the exception of the kiwi fruit extract, caused marked damage to the cuticle of H. polygyrus adult male and female worms, reflected in the loss of surface cuticular layers. Efficacy was comparable for both sexes of worms, was dependent on the presence of cysteine and was completely inhibited by the cysteine proteinase inhibitor, E-64. LD50 values indicated that the purified proteinases were more efficacious than the proteinases in the crude latex, with purified ficin, papain, chymopapain, Egyptian milkweed latex extract and pineapple fruit extract, containing fruit bromelain, having the most potent effect. The mechanism of action of these plant enzymes (i.e. an attack on the protective cuticle of the worm) suggests that resistance would be slow to develop in the field. The efficacy and mode of action make plant cysteine proteinases potential candidates for a novel class of anthelmintics urgently required for the treatment of humans and domestic livestock

    In vitro anthelmintic effects of cysteine proteinases from plants against intestinal helminths of rodents

    Get PDF
    Infections with gastrointestinal (GI) nematodes are amongst the most prevalent worldwide, especially in tropical climates. Control of these infections is primarily through treatment with anthelmintic drugs, but the rapid development of resistance to all the currently available classes of anthelmintic means that alternative treatments are urgently required. Cysteine proteinases from plants such as papaya, pineapple and fig are known to be substantially effective against three rodent GI nematodes, Heligmosomoides polygyrus, Trichuris muris and Protospirura muricola, both in vitro and in vivo. Here, based on in vitro motility assays and scanning electron microscopy, we extend these earlier reports, demonstrating the potency of this anthelmintic effect of plant cysteine proteinases against two GI helminths from different taxonomic groups – the canine hookworm, Ancylostoma ceylanicum, and the rodent cestode, Rodentolepis microstoma. In the case of hookworms, a mechanism of action targeting the surface layers of the cuticle indistinguishable from that reported earlier appears to be involved, and in the case of cestodes, the surface of the tegumental layers was also the principal location of damage. Hence, plant cysteine proteinases have a broad spectrum of activity against intestinal helminths (both nematodes and cestodes), a quality that reinforces their suitability for development as a muchneeded novel treatment against GI helminths of humans and livestock

    Identification and activity of inhibitors of the essential nematode-specific metalloprotease DPY-31

    Get PDF
    Infection by parasitic nematodes is widespread in the developing world causing extensive morbidity and mortality. Furthermore, infection of animals is a global problem, with a substantial impact on food production. Here we identify small molecule inhibitors of a nematode-specific metalloprotease, DPY-31, using both known metalloprotease inhibitors and virtual screening. This strategy successfully identified several lM inhibitors of DPY-31 from both the human filarial nematode Brugia malayi, and the parasitic gastrointestinal nematode of sheep Teladorsagia circumcincta. Further studies using both free living and parasitic nematodes show that these inhibitors elicit the severe body morphology defect ‘Dumpy’ (Dpy; shorter and fatter), a predominantly non-viable phenotype consistent with mutants lacking the DPY-31 gene. Taken together, these results represent a start point in developing DPY-31 inhibition as a totally novel mechanism for treating infection by parasitic nematodes in humans and animals

    The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes

    Get PDF
    The cuticle of parasitic nematodes performs many critical functions and is essential for proper development and for protection from the host immune response. The biosynthesis, assembly, modification and turnover of this exoskeleton have been most extensively studied in the free-living nematode, Caenorhabditis elegans, where it represents a complex multi-step process involving a whole suite of enzymes. The biosynthesis of the cuticle has an additional level of complexity, as many of the enzymes also require additional proteins to aid their activation and selective inhibition. Blister-5 (BLI-5) represents a protein with a kunitz-type serine protease interacting domain and is involved in cuticle collagen biosynthesis in C. elegans, through its interaction with subtilisin-like processing enzymes (such as BLI-4). Mutation of the bli-5 gene causes blistering of the collagenous adult cuticle. Homologues of BLI-5 have been identified in several parasitic species that span different nematode clades. In this study, we molecularly and biochemically characterize BLI-5 homologues from the clade V nematodes C. elegans and Haemonchus contortus and from the clade III filarial nematode Brugia malayi. The nematode BLI-5 orthologues possess a shared domain structure and perform similar in vitro and in vivo functions, performing important proteolytic enzyme functions. The results demonstrate that the bli-5 genes from these diverse parasitic nematodes are able to complement a C. elegansbli-5 mutant and thereby support the use of the C. elegans model system to examine gene function in the experimentally less-amenable parasitic species

    Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in <i>Caenorhabditis elegans</i>

    Get PDF
    The nematode cuticle is a protective collagenous extracellular matrix that is modified, cross-linked, and processed by a number of key enzymes. This Ecdysozoan-specific structure is synthesized repeatedly and allows growth and development in a linked degradative and biosynthetic process known as molting. A targeted RNA interference screen using a cuticle collagen marker has been employed to identify components of the cuticle biosynthetic pathway. We have characterized an essential peroxidase, MoLT-7 (MLT-7), that is responsible for proper cuticle molting and re-synthesis. MLT-7 is an active, inhibitable peroxidase that is expressed in the cuticle-synthesizing hypodermis coincident with each larval molt. mlt-7 mutants show a range of body morphology defects, most notably molt, dumpy, and early larval stage arrest phenotypes that can all be complemented with a wild type copy of mlt-7. The cuticles of these mutants lacks di-tyrosine cross-links, becomes permeable to dye and accessible to tyrosine iodination, and have aberrant collagen protein expression patterns. Overexpression of MLT-7 causes mutant phenotypes further supporting its proposed enzymatic role. In combination with BLI-3, an H2O2-generating NADPH dual oxidase, MLT-7 is essential for post-embryonic development. Disruption of mlt-7, and particularly bli-3, via RNA interference also causes dramatic changes to the in vivo cross-linking patterns of the cuticle collagens DPY-13 and COL-12. This points toward a functionally cooperative relationship for these two hypodermally expressed proteins that is essential for collagen cross-linking and proper extracellular matrix formation

    Expression of the phosphorylcholine-containing glycoprotein, ES-62, in filarial nematodes

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the convergence rate in martingale CLT in Hilbert spaces

    Get PDF
    SIGLETIB Hannover: RO 8278(90-031) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Enzymology of the nematode cuticle: A potential drug target?

    Get PDF
    AbstractAll nematodes possess an external structure known as the cuticle, which is crucial for their development and survival. This structure is composed primarily of collagen, which is secreted from the underlying hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, and these proteases are conserved across the nematode phylum and many are involved in the moulting/exsheathment process. This review highlights the enzymes required for cuticle formation, with a focus on the post-secretion moulting events. Where orthologues of the C. elegans enzymes have been identified in parasitic nematodes these may represent novel candidate targets for future drug/vaccine development
    corecore